
 

 

 

 

 

 

 

Journal of Emerging Technologies and Industrial Applications  

Vol. 2 No. 1 (2023) pp. 1-10 

e-ISSN: 2948-507X 

© Malaysia Board of Technologists (MBOT) 

Journal homepage: https://jetia.mbot.org.my/index.php/jetia/index 

 

 

 
 

A Comprehensive Review of Sustainable Benefit of Cassava 

Starch and Its Potential in Wood-Based and Lignocellulosic 

Materials 

Ros Syazmini Mohd Ghani*1,2,a, Man Djun Lee3,b, Sofiyah Mohd Razali2,4,c 

1Department of Mechanical Engineering, School of Engineering and Technology, 

University of Technology Sarawak, 96000 Sibu, Sarawak, MALAYSIA 

 
2Centre of Excellence in Wood Engineered Product, 

University of Technology Sarawak, 96000 Sibu, Sarawak, MALAYSIA 

 
3Department of Mechanical Engineering, Faculty of Engineering and Science,  

Curtin University, CDT 250, 98009, Miri, Sarawak, MALAYSIA 

 
4School of Foundation Studies, 

 University of Technology Sarawak, 96000 Sibu, Sarawak, MALAYSIA 

 

 

Email: aros.syazmini@uts.edu.my, bmandjun@curtin.edu.my, csofiyah@uts.edu.my 

Received 18 February 

2023; Accepted 10 May 

2023; Available online 22 

June 2023 

 

Keywords: wood adhesive, 

wood binders, 

thermoplastic starch, starch 

modification, 

lignocellulosic 

 

 

 

 

*Corresponding Author: 

Ros Syazmini Mohd Ghani, 

Department of Mechanical Engineering, School of Engineering and Technology, 

University of Technology Sarawak, 96000 Sibu, Sarawak, MALAYSIA 

Email :  ros.syazmini@uts.edu.my

 

1. Introduction 

Cassava (Manihot esculenta) is a perennial woody 

shrub native to tropical America. Its sweet, chewy 

underground tuber is one of the most popular edible root 

vegetables. Other names for this plant include yuca, 

manioc, and tapioca. Cassava is mainly grown for its 

starchy roots, but it also has edible stems, leaves, and 

petioles that are widely used as food [1]. Approximately 

60% of cassava production is for human consumption, 

33% for animal feed, and 7% for other industries like 

textile, pharmaceutical, cosmetics, and paper [2].  

Abstract: Cassava starch possesses enormous potential as a versatile and eco-friendly material that 

extends beyond its primary use in the food industry. Despite its widespread applications in the 

textile, pharmaceutical, and cosmetics sectors, the wood and lignocellulosic industry has yet to 

realize its full potential. This review paper provides a comprehensive and detailed analysis of 

cassava starch-wood-based and lignocellulosic products, highlighting the technical challenges 

encountered and potential solutions. The review emphasizes the promising applications of cassava 

starch in bio-based adhesive, and thermoplastic starch (TPS) composite. Moreover, this paper 

suggests new research areas that must be explored to enhance the practicality and commercialization 

of cassava starch-based products in the wood and lignocellulosic industry. Cassava starch is an 

invaluable resource for sustainable and eco-friendly wood-based products, and it is imperative to 

conduct further research to unlock its full potential. 
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Cassava is grown widely around the world, but 

Africa (57%) and Asia (31%) are the primary producers 

[3]. For example, according to the Malaysia Department 

of Agriculture, 2,876 hectares of cassava were grown in 

Malaysia in 2019, producing about 42,285 metric tonnes 

of the crop [4]. It is primarily planted in Sarawak 

(Eastern Malaysia), covering about 600 hectares [5]. The 

primary industries utilizing cassava in Malaysia are the 

food, textile, and paper industries. In addition, it is also 

being used in the production of certain chemicals like 

acetone, alcohol, and acetic acid [4].  

Recently been an increase in interest in utilizing the 

commercial potential of cassava starch for various 

applications (Table 1). This is mainly caused by rising 

cassava production, which increases starch availability 

and makes it more affordable for industrial operations, 

ultimately creating new niche markets within the 

already-existing industry [6]. In addition, cassava starch 

is biocompatible, biodegradable, stable, low-cost, and 

non-toxic, making it one of the intriguing additives for 

researchers to work with [7].  

 

Table 1 - The current research area for cassava plants 

and their waste 

Application Niche Areas Source(s) 

Biofuels 

Bioethanol [8]–[10] 

Biohydrogen [11], [12] 

Biobutanol [13] 

Packaging 

Food trays [14] 

Biofilms / bioplastics [15]–[20] 

Nanocomposite / 

nanomaterials 
[21]–[25] 

Medical 
Tissue engineering [26]–[28] 

Drug delivery [29]–[32] 

Bio adsorbents 
Metal ions removal [33]–[35] 

Dye removal  [36]–[38] 

 

Wood and lignocellulosic materials are highly 

valued for their renewability, potential for carbon 

sequestration, and ability to support sustainable 

industries while reducing environmental impact. Wood 

is a natural material from trees' stems, branches, and 

roots. It has been used for centuries as a versatile and 

renewable resource due to its strength, durability, and 

aesthetic appeal. On the other hand, lignocellulosic 

material refers to plant biomass containing lignin and 

cellulose, including wood, agricultural residues, and 

energy crops grown specifically for fuel production [39]. 

Malaysia's wood industry has significantly 

contributed to its economic growth and foreign exchange 

earnings. However, the wood supply from Malaysia is no 

longer sustainable, and the natural forest's average log 

production is decreasing. As a result, the wood industry 

has shifted its focus from solid wood to wood-based 

products, such as engineered wood and other 

lignocellulosic material like bamboo products. These 

products' innovation allows cassava starch to be 

incorporated into the wood-based and lignocellulosic 

material industry. 

Therefore, this paper reviewed the properties of 

cassava starch that could be used in the wood and other 

lignocellulose material industry. This study is designed 

to address the following questions: 

1. What is the current research in the related field, and 

what is the limitation and challenge of such an 

application? 

2. Is the application fit for patenting and 

commercialization, and what should be the research 

focus? 

Thus, this review paper offers valuable insights 

related to the current research and the future potential of 

cassava starch in the wood-based industry. This review 

paper has been divided into three parts. The first part 

explains the properties of cassava starch that are 

advantageous for wood-based applications. The second 

part highlights the past research and attempts to answer 

the above-stated research questions. Finally, this paper 

will conclude the opportunities and future outlooks of 

utilizing cassava starch in wood research. 

 

2. Properties of Cassava Starch 

Cassava is a plant that converts the most solar 

energy into soluble carbohydrates per unit of land area. 

Compared to other starchy crops, cassava produces 

roughly 49% more carbohydrates than rice and 25% 

more than maize. The most significant contributor to 

product yield is cassava starch, which has around two to 

four times as much as yam bean, taro, and sweet potato 

combined [40]. The cassava root's typical composition 

comprises 70% moisture, 24% starch, 2% fiber, 1% 

protein, and 3% minerals [6].  

Starch is a polymer of lengthy chains of glucose 

molecules joined by glycosidic bonds, which have the 

chemical formula (C6H10O5)n. The high molecular 

weight components of starch, amylose, and amylopectin 

are principally responsible for the chemical functioning 

of the substance. In cassava starch, amylopectin makes 

up 83% of the amylose composition and is accountable 

for crystallization [41]. The significant characteristics of 

starch, such as flexibility and mechanical resistance, are 

influenced by this crystalline area. However, these 

characteristics are also influenced by the 

amylose/amylopectin ratio and the component's 

molecular weight distribution, degree of branching, and 

conformation process [2].  

The starch granules are usually 4 to 35 µm in 

diameter and insoluble in cold water. However, they will 

swell extensively if heated in excess water because they 

absorb water and disintegrate [9]. They would also lose 

birefringence and crystallinity, and some amylose would 

leach out. As a result, the starch granules rupture, and a 

hydrophilic colloidal solution is created, altering the 

starch mixture's rheological characteristics [43].  

The cassava-based products quality is primarily 

dependent on the starch’s quality [44]. The starch content 

in mature cassava roots is around 15 to 33%, depending 

on climate and harvest period [43]. The low residual 

materials (fat, protein, and ash) in cassava starch, low 
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amylose content, and high amylose and amylopectin 

molecular weights distinguish them from other starches. 

The physicochemical properties of starch mainly 

depend on the amylose and amylopectin ratio [45]. 

Despite not being soluble in cold water, native starch 

granules with an amylose and amylopectin molecular 

order can absorb water because of their semi-amorphous 

structure. Water plasticizes the amorphous area of 

hydrated granules, lowering the overall glass transition 

temperature (Tg) and improving the mobility of 

biopolymers [46]. The physical characteristics of 

polysaccharides, or Tg, indicate the temperature at which 

they change from an amorphous to a viscous condition. 

Polymers in a glassy, brittle state at Tg became flexible. 

Unfortunately, it is difficult to measure the Tg of starch 

since it contains both amorphous and crystalline regions 

[45].  

Cassava starch is used in the production of products 

based on its constitution, physicochemical makeup, and 

functional characteristics. Starch functions may differ 

depending on structural characteristics, starch granule 

size, crystallinity, level of polymerization, or chain 

length of amylopectin structures [47]. Because of its 

chemical and structural composition, starch is a polymer 

with low shear resistance, low processability, low 

solubility in water, high susceptibility to humidity, and 

hydrophilicity [48]. However, these starch-degrading 

capabilities can be altered depending on the use or 

requirements.  

 

3. Potential Utilization of Cassava Starch in Wood-

Based and Lignocellulosic Materials Products 

3.1 Bio-based adhesive 

The wood-based industry heavily relies on adhesives 

for load-bearing construction, flooring, and furniture-

making. These adhesives are crucial in producing glued 

wood composite materials and are manufactured in large 

quantities. It is important to note that the particleboard 

industry has the highest demand for these adhesives, 

followed by plywood, laminated veneer lumber, oriented 

strand products, medium-density fiberboard, and other 

composites [49]. 

Although various animal and plant proteins were 

once utilized to make adhesive, this practice has been 

supplanted by synthetic polymers made from 

petrochemical sources, such as phenol-formaldehyde, 

urea-formaldehyde, and melamine-formaldehyde, due to 

the inadequate qualities of natural sources of adhesive 

[50]. Moreover, the bonding ability and water resistance 

of adhesives made from fossil sources are excellent. 

Nonetheless, formaldehyde makes up a significant 

portion of wood adhesive; for instance, urea-

formaldehyde contributes 30% of formaldehyde due to 

its simplicity of processing, widespread availability, low 

cost, and strong reactivity. However, formaldehyde has 

recently been linked to a risk to human health due to its 

ability to cause cancer and environmental hazard due to 

greenhouse gas emissions produced during its 

production. As a result, using formaldehyde is strongly 

discouraged in all industries [51]. 

Developing eco-friendly adhesives from renewable 

biomass to replace synthetic adhesives has garnered 

significant interest. Starch has found widespread use in 

the materials industry as an adhesive for various 

products, including binders, sticking materials, 

adhesives, and pastes. Among the different types of 

starch, cassava starch is a desirable option due to its 

abundance, renewability, accessibility, low cost, ease of 

processing, strong adhesion, and good film-forming 

properties. It should also be noted that cassava starch 

paste boasts higher viscosities and lower retrogradation 

tendencies than cereal-derived starches like corn starch 

[52].  

However, it has been determined that the hydrogen 

bonds in the starch-based adhesive are too weak to bind 

wood, being weaker than chemical bonds [53], [54]. 

Additionally, the ease of hydroxyl groups to form 

hydrogen bonds with water molecules can lead to a 

variety of issues, including poor weather durability as 

evidenced by low water resistance, low cold resistance, 

low stability, low drying ability, high affinity for water, 

and short shelf life [50], [51], [55]. Nonetheless, the 

starch can be altered physically or chemically to enhance 

its structure and binding capabilities [56]. 

Many researchers are currently working on 

developing green starch modification. For example, 

Mhaske et al. [57] suggest using different green starch 

modification types: annealing, ball milling, dry heating, 

heat moisture treatment, high hydrostatic pressure, 

microwave, plasma, ultrasound, and enzymatic. 

Maniglia et al. [58] further suggest that dry heating and 

ozone treatments are environmentally friendly. 

However, only ball milling modification and ozone 

treatment have been done on cassava starch, and both 

processes are still in the early research stage. Therefore, 

there is plenty of room for improvement to optimize the 

treatment or research other methods, as suggested by 

Mhaske et al. [57] and Maniglia et al. [58]. It is important 

to acknowledge that green products typically come with 

a higher price tag. This is because manufacturers may 

incur additional expenses to make their products 

environmentally friendly, and thus increase the 

production costs. As a result, using starch as a low-cost 

raw material may not be as economically viable as it once 

was [57]. 

Once the research is complete, the next step is to 

commercialize the concept. However, it is essential to 

examine the storage impact on the adhesive bonding 

formulation as it is a crucial factor or research 

opportunity that should be considered before the product 

is commercially available. During the storage of starch 

pastes, a molecular restructuring procedure known as 

retrogradation occurs. This process intensifies the 

interaction between the long-term amylopectin chains 

and the amylose chains, resulting in syneresis. This 

change in visco-elastic characteristics of the pastes 

shortens the shelf-life of starch-based adhesives [54]. In 

this regard, this problem needed to be addressed before 

commercializing the product.  
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3.2 Thermoplastic starch (TPS) composite 

Thermoplastic starch (TPS) is a biodegradable and 

renewable polymer derived from starch. TPS exhibits 

thermoplastic behavior, meaning it can be melted and 

reprocessed multiple times without significant 

degradation. Examples of applications of TPS are in 

Table 2.  

 

Table 2 - The application of TPS 

Application Examples 

Packaging 

materials 

 

Biodegradable 

plastics 

 

Agricultural 

films 

 

3D printing 

filaments 

 
 

Starch can be transformed into TPS by fracturing its 

structure under high shear stress and temperature 

conditions. This causes the starch chains to lose 

structural integrity and undergo intermolecular 

rearrangement. Plasticizers can be used for this 

alteration, including sorbitol, water, urea, glycerine, 

fructose, glucose, and glycol [59]. The proportion of 

plasticizer and its chemical nature strongly influence the 

physical properties of the processed starch in two ways: 

[1] controlling its destruction and depolymerization and 

[2] affecting the final properties of the material, such as 

its Tg and modulus [60]. However, the TPS qualities, like 

other applications, are still very reliant on the amount of 

amylose in the starch [61].  

Typically, natural starch is processed into TPS using 

a variety of industrial processes, including injection, 

extrusion, or a batch mixer coupled with a torque 

rheometer. TPS has excellent extensibility, good gas 

barrier qualities, and complete biodegradation. 

Nevertheless, when exposed to humidity, TPS absorbs 

moisture, leading to mold. It also has weak mechanical 

properties and is easily thermally deformed, which 

restricts its use [59], [62]. However, TPS can be 

improved by applying plasticization, mixing, and other 

modification processes [40].  

Plasticization techniques are frequently employed to 

increase the flexibility of TPS. It is by lowering 

intramolecular hydrogen bonding along polymer chains 

and hence increasing intermolecular space. 

Consequently, this contributes to lower Tg and decreased 

crystallinity with increased molecular mobility [63]. 

Schlemmer and Sales [64] prepared TPS film from 

cassava starch with three different vegetable oils of 

Brazilian Cerrado as plasticizers: buriti, macauba, and 

pequi. It was found that all three vegetable oils presented 

a good plasticizing effect with interesting thermal 

properties. The TPS film obtained from these studies is 

homogenous and has good properties. Unfortunately, no 

related works on cassava starch manipulated other 

ingredients as plasticizers, and no further 

commercialization activities. 

The mechanical properties of TPS-based materials 

can be enhanced by mixing with other additives such as 

kaolin, emulsifiers, pectin, plant fibers, and cellulose 

[61]. However, this review paper will only focus on 

plant-based fibers. In cassava starch TPS composites, 

various types of lignocellulosic fibers with different sizes 

from micro to nanoscale have been used as 

reinforcement, such as wood pulp [65], [66], sugar palm 

[67], [68], jute [62], [69], sisal [70], kapok [69], hemp 

[71], flax [72], [73], kenaf [74], coir [75], and cogon 

grass [76], [77]. The advantage of using natural fibers is 

that they are readily available, biodegradable, have good 

strength with low density, low cost, and are renewable. 

Apart from natural fiber, agricultural waste can also be 

used in TPS composite, thus promoting the circular 

economy. So far, some research has been done on 

agricultural waste, for example, banana leaf fiber [5], 

sugarcane bagasse [78], oil palm fiber [79], [80], cassava 

bagasse [23], [81], and coconut fiber [59]. 

Edhirej et al. [81] developed TPS films from 

unmodified cassava starch with cassava bagasse blend 

with 30% w/w fructose as the plasticizer. It was 

discovered that the size and concentration of cassava 

bagasse impacted the film's physical characteristics, 

increasing the film thickness but decreasing the density. 

Moreover, a more significant bagasse content marginally 

raises the moisture content while lowering the film's 

water solubility. Because of their similar chemical 

makeup, scanning electron microscope (SEM) pictures 

of TPS, especially those of films containing small-size 

bagasse, reveal heterogenous matric composition. The 

study confirms that natural fiber can alter the TPS film's 

characteristics. Jumaidin et al. [77] found that the TPS 

composite of cogon grass fiber and cassava starch 

decreases thickness-swelling value and water solubility, 
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suggesting improved dimensional stability of the TPS 

composite. However, they observed no significant 

change in TPS composite moisture content and water 

absorption behavior. Prachayawarakorn et al. [82] 

suggest that the changes are related to the hydrophobic 

characteristics of natural fibers in comparison to the 

hydrophilic properties of the starch. 

Campos et al. [80] studied the mechanical properties 

of TPS composites from oil palm mesocarp fibers that 

were prepared using a screw extrusion rheometer. While 

the elastic modulus of the TPS composite increased to 

193% and 153% for maximum stress, the elongation at 

break remained constant. Moreover, it improved its 

thermal stability. The silica in the oil palm mesocarp 

fibers is responsible for the improvement of mechanical 

and thermal properties. It was discovered that the ideal 

TPS composite would be made with 10% of oil palm 

mesocarp fibers. Prachayawarakorn et al. [82] suggest 

that the increased mechanical strength is due to the 

chemical similarity of starch and plant fibers. 

There are several research opportunities available to 

investigate the impact of plasticizers on cassava starch 

TPS. So far, only one relevant article has been 

discovered. Although the TPS composite with natural 

fibers has shown promise, further research is necessary 

to enhance material processing and determine the 

suitability of the TPS composite matrix. Ramírez et al. 

[59] suggested three primary research focuses on TPS 

composite. Firstly, it is to produce green material that 

does not involve any chemicals in its production so that 

it biodegrades, is renewable, and does not pollute the 

environment. However, some properties improvement 

for TPS composite, such as fire-retardancy is essential 

for electronics, construction, and transportation, usually 

involves chemicals [83]. Therefore, it would be 

important that any specific properties improvement 

should only be made with natural additives to retain the 

green properties of the TPS composite.  

The second research area is to address the pressing 

issue of processing techniques for TPS composites. 

These composites pose significant challenges when it 

comes to injection molding or extrusion, particularly 

when a considerable amount of fiber is added or the fiber 

itself is too hard to be processed via injection. This area 

of focus is critical as it could have a detrimental impact 

on the commercialization of TPS composites. To 

circumvent this issue, wood scientists should research 

fibers that are easier to process or use smaller fibers 

(micro to nano). It would be highly advantageous to 

collaborate with an engineer who can assist with 

processing and machining to prevent problems early on 

and make it easier to scale up the process. 

The life cycle analysis is the final area of research 

attention. TPS composite is frequently utilized in 

consumer devices with limited lifespans that are quickly 

discarded. However, these materials also can be 

employed for long-lasting interior applications. Thus, a 

life cycle study is necessary to further develop the TPS 

composite application. In addition, to ensure proper 

handling and recycling of TPS composite, it is also 

essential to set up a unique composting system; 

otherwise, this could result in environmental pollution 

[84]. 

 

4. Summary and outlook 

The cassava starch's characteristics and potential 

uses in the wood-based sector are outlined in this review. 

Research and application of cassava starch for the food 

industry are well-established. Currently, the utilization of 

cassava starch has been expanding to other sectors such 

as textile and pharmaceutical. This is due to the 

expansion of cassava cultivation, especially around 

Africa and Southeast Asia, owing to their ability to 

withstand drought.  

Cassava starch is crucial for the development of 

environmentally beneficial products. On the other hand, 

wood-based and lignocellulosic materials are yet another 

sustainable and environmentally friendly material. 

Nevertheless, the utilization of these two materials to 

produce sustainable products is still limited. This paper 

discovers two main applications: bio-based adhesives 

and TPS composite.  

However, most studies are still needing further 

research, especially on commercialization. This is a 

result of the hydrophilic and poor mechanical qualities of 

cassava starch, which are limitations of the substance. 

Several strategies have been researched, including 

altering the starch in wood adhesives and binders and 

adding natural fibers to TPS composite. Although some 

of these approaches, especially in TPS starch, have 

considerably improved the properties, much work is still 

required to optimize the process, mainly to produce green 

products without chemicals. Moreover, this review paper 

also suggests the research opportunity for each 

application as the way forward before the application can 

be patented and commercialized.  

Another challenge is to develop a feasible and 

straightforward method to produce different cassava 

starch-wood-based products that can be mass-produced. 

Cassava starch-wood-based or lignocellulosic material 

products are currently primarily prepared on a limited 

scale in the laboratory. Thus, developing commercially 

feasible processing techniques will be crucial for the 

industry. 
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